543-548-Hai Ling Li

نویسندگان

  • Fei Wang
  • Feng Chen
  • Hai-Ling Li
  • Peng Sun
  • Xiang-Ming Liu
  • Ting-Jian Yang
  • Hao- Qing Song
چکیده

The aim of this study was to report a case that underwent a craniotomy after primary pre-operative cerebrovascular and 3D digital subtraction angiography (DSA) showed false results. DSA misdiagnosis and missed diagnosis of aneurysms were found, and the subject was subsequently treated accordingly. This case was analysed to identify: 1) the cause of the false positive and false negative results in DSA, 2) the limitations of 3D DSA and 3) the experience acquired and lessons learned. A 54year-old spontaneous subarachnoid haemorrhage patient underwent DSA and 3D DSA under local anaesthesia. Results revealed aneurysm at the anterior cerebral A1 end. Considering the excessively large tumour angle circuitry, we decided to adopt craniotomy and clipping under direct vision. Misdiagnosis and missed diagnosis were intra-operatively noticed, and the aneurysm was clipped out. About half a month after the operation, the patient underwent DSA again under full coordination. The results from these two DSAs were compared. An originally suspected aneurysm was merely a pseudo-anterior communicating artery; the real aneurysm was located in the starting zone of A1. Active cooperation (or anaesthesia) made 3D DSA clear and complete. Moreover, the two 3D DSAs were both ineffective in identifying false positive aneurysms because of anatomical variation. 3D DSA is still limited in differentiating or developing anatomical variations of cerebrovascular vessels, thereby causing false positive results. The use of 3D DSA requires full cooperation from the patient. The guiding effect of the clot accumulation area on aneurysms should be considered during operation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory of Orthogonal Designs

OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543 STRUCTURE OF GENERAL FACTORIAL DESIGNS . . . . . . . . . . . 543 SUITABLE CONFOUNDING RULES . . . . . . . . . . . . . . . . . . . . . 544 Design Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544 Block Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545 Gener...

متن کامل

Peroxisome proliferator-activated receptor-γ agonist inhibits collagen synthesis in human keloid fibroblasts by suppression of early growth response-1 expression through upregulation of miR-543 expression.

A keloid is a benign skin tumor formed by an overgrowth of granulation tissue in affected patients. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists were reported to be able to regulate extracellular matrix production in human dermal fibroblasts. This study explored the underlying molecular mechanism of PPAR-γ agonist troglitazone treatment for fibroblasts obtained from keloid pat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015